El objetivo principal del curso es dar a los estudiantes la posibilidad de usar el servidor Microsoft R para crear y ejecutar un análisis en un conjunto de datos grande y mostrar cómo utilizarlo en entornos Big Data, como un clúster Hadoop o Spark o un SQL Base de datos del servidor.
Requisitos previos:
- Programming experience using R, and familiarity with common R packages
- Knowledge of common statistical methods and data analysis best practices.
- Basic knowledge of the Microsoft Windows operating system and its core functionality.
Dirigido a:
El público principal de este curso es la gente que desea analizar grandes conjuntos de datos dentro de un gran entorno de datos.
El público secundario son desarrolladores que necesitan integrar los análisis de R en sus soluciones.
Objetivos:
Tras finalizar el curso los estudiantes serán capaces de:
- Explicar cómo funcionan Microsoft R Server y Microsoft R Client
- Utilice R Client con R Server para explorar datos grandes almacenados en diferentes almacenes de datos
- Visualización de datos mediante gráficos y gráficos
- Transforma y limpia grandes conjuntos de datos
- Implementar opciones para dividir trabajos de análisis en tareas paralelas
- Construir y evaluar modelos de regresión generados a partir de datos grandes
- Crear, puntuar e implementar modelos de partición generados a partir de datos grandes
- Utilice R en los entornos de SQL Server y Hadoop
Temario:
Module 1: Microsoft R Server and R Client
Explain how Microsoft R Server and Microsoft R Client work.
Lessons:
- What is Microsoft R server
- Using Microsoft R client
- The ScaleR functions
Lab : Exploring Microsoft R Server and Microsoft R Client
- Using R client in VSTR and RStudio
- Exploring ScaleR functions
- Connecting to a remote server
After completing this module, students will be able to:
- Explain the purpose of R server.
- Connect to R server from R client
- Explain the purpose of the ScaleR functions.
Module 2: Exploring Big Data
At the end of this module the student will be able to use R Client with R Server to explore big data held in different data stores.
Lessons:
- Understanding ScaleR data sources
- Reading data into an XDF object
- Summarizing data in an XDF object
Lab : Exploring Big Data
- Reading a local CSV file into an XDF file
- Transforming data on input
- Reading data from SQL Server into an XDF file
- Generating summaries over the XDF data
After completing this module, students will be able to:
- Explain ScaleR data sources
- Describe how to import XDF data
- Describe how to summarize data held in XCF format
Module 3: Visualizing Big Data
Explain how to visualize data by using graphs and plots.
Lessons:
- Visualizing In-memory data
- Visualizing big data
Lab : Visualizing data
- Using ggplot to create a faceted plot with overlays
- Using rxlinePlot and rxHistogram
After completing this module, students will be able to:
- Use ggplot2 to visualize in-memory data
- Use rxLinePlot and rxHistogram to visualize big data
Module 4: Processing Big Data
Explain how to transform and clean big data sets.
Lessons:
- Transforming Big Data
- Managing datasets
Lab : Processing big data
- Transforming big data
- Sorting and merging big data
- Connecting to a remote server
After completing this module, students will be able to:
- Transform big data using rxDataStep
- Perform sort and merge operations over big data sets
Module 5: Parallelizing Analysis Operations
Explain how to implement options for splitting analysis jobs into parallel tasks.
Lessons:
- Using the RxLocalParallel compute context with rxExec
- Using the revoPemaR package
Lab : Using rxExec and RevoPemaR to parallelize operations
- Using rxExec to maximize resource use
- Creating and using a PEMA class
After completing this module, students will be able to:
- Use the rxLocalParallel compute context with rxExec
- Use the RevoPemaR package to write customized scalable and distributable analytics.
Module 6: Creating and Evaluating Regression Models
Explain how to build and evaluate regression models generated from big data.
Lessons:
- Clustering Big Data
- Generating regression models and making predictions
Lab : Creating a linear regression model
- Creating a cluster
- Creating a regression model
- Generate data for making predictions
- Use the models to make predictions and compare the results
After completing this module, students will be able to:
- Cluster big data to reduce the size of a dataset.
- Create linear and logit regression models and use them to make predictions.
Module 7: Creating and Evaluating Partitioning Models
Explain how to create and score partitioning models generated from big data.
Lessons:
- Creating partitioning models based on decision trees.
- Test partitioning models by making and comparing predictions
Lab : Creating and evaluating partitioning models
- Splitting the dataset
- Building models
- Running predictions and testing the results
- Comparing results
After completing this module, students will be able to:
- Create partitioning models using the rxDTree, rxDForest, and rxBTree algorithms.
- Test partitioning models by making and comparing predictions.
Module 8: Processing Big Data in SQL Server and Hadoop
Explain how to transform and clean big data sets.
Lessons:
- Using R in SQL Server
- Using Hadoop Map/Reduce
- Using Hadoop Spark
Lab : Processing big data in SQL Server and Hadoop
- Creating a model and predicting outcomes in SQL Server
- Performing an analysis and plotting the results using Hadoop Map/Reduce
- Integrating a sparklyr script into a ScaleR workflow
After completing this module, students will be able to:
- Use R in the SQL Server and Hadoop environments.
- Use ScaleR functions with Hadoop on a Map/Reduce cluster to analyze big data.